Problem Set 7, Computational Neuroscience

Due: 04/23/2004

7.1 Optimal Coding in Early Visual System

Suppose you receive a noisy signal \(x \) and you transmit it over a noisy linear channel:

\[
y = A(x + n) + u
\]

\(x \) is our original signal, \(n \) the noise in it, \(A \) a constant representing the linear channel, and \(u \) the noise in the channel. (Remember that we need a scale to make sense of things— the questions we are about to ask wouldn’t make sense without \(u \).)

The general kind of question we will be trying to answer in this section is, “How do we set \(A \) so that \(I(y; x) \) is maximized?” This is one popular meaning of “coding well”: finding the coding (here, \(A \)) that maximizes the information that the output carries about the input signal that we want to transmit in the presence of noise.

Given \(x, n, \) and \(u \) to be gaussians with mean zero and variances \(\sigma^2, \eta^2, \) and \(\nu^2, \) respectively, we have shown in the lecture that the mutual information

\[
I = \frac{1}{2} \log_e \frac{A^2(\sigma^2 + \eta^2) + \nu^2}{A^2\eta^2 + \nu^2}
\]

(2)

- Does \(A \) matter at all in the case \(\nu = 0? \) If \(\nu \neq 0, \) what’s the maximum amount of information \(y \) can carry about \(x? \) How large is \(A \) in that case? So, if somebody asked you to set \(A \) so as to maximize \(I(y; x) \), how would you set it?

Clearly, \(A \) sets the scale of the output signal \(y \) with respect to the noise in it, \(u \). We want to make \(A \) as large as possible, so that \(u \) is negligible (infinite signal-to-noise ratio). But when considering neural transmission, we can’t assume that neurons have an infinite signal-to-noise ratio. Rather, we want to minimize the the cost of information transmission, a given constraint within which we must find the best \(A \). We will formulate this constraint by demanding that \(C \equiv \langle y^2 \rangle \), the typical output signal magnitude or the capacity, is minimized. It is straightforward to show that

\[
C = A^2(\sigma^2 + \eta^2) + \nu^2
\]

(3)

Now we can construct an energy function

\[
E = C - \frac{k^2}{2} I
\]

(4)

in which \(k \) is a constant to set the relative weight for minimizing \(C \) and maximizing \(I \).

- By taking \(\frac{dE}{dA} = 0 \), show that

\[
|A| = \begin{cases}
\sqrt{\frac{\nu^2}{\eta^2}} \sqrt{\frac{1 + \sqrt{1 + k^2 \eta^2 / \sigma^2 \nu^2}}{2(1 + \nu^2 / \sigma^2)}} - 1 & \text{if} \sqrt{\ldots} \text{is not real} \\
0 & \text{if} \sqrt{\ldots} \text{is not real}
\end{cases}
\]

(5)

- For \(\nu^2 = 1, \eta^2 = 0.001, \text{ and } k^2 = 10 \), plot \(|A| \) as a function of \(\sigma \), for \(\sigma \) from 0.1 to 100 in double-log plot. What is the approximate behaviour? Is it consistent with the decorrelation theory?
7.1.1 Multi-Dimensional Solution

Things get much more interesting if \(x \) is not a scalar, but an \(N \)-dimensional vector. As an example, \(x \) might be the vector representing light intensity at each of 1,000,000 photoreceptors. Some of the retina’s output cells (retinal ganglion cells) seem to pool inputs from several photoreceptors in a roughly linear fashion. In addition to that, the pooling could also include integration over time, say, at LGN level (a stage between retina and visual cortex) — thus spatiotemporal coding. This pooling would be represented by \(A \), our linear channel: the retinal ganglion cells’ (or LGN) outputs would be \(y \). A re-phrasing of the basic question, then, would be “given a probability distribution on \(x \), noise models \(n \) and \(u \), and a scaling constraint on \(y \), what is the pooling strategy that would result in the retinal ganglion cells’ (or LGN) output being most informative about the light signals \(x \) coming into the eye?”

As we will show later (in a two-dimensional case) that if we look at the Fourier transform of the coding, we get the same solution, except that \(|A|, |\sigma^2|\) are now functions of spatiotemporal frequencies. Specifically, \(|\sigma^2(f, w)|\) is now the power spectrum of natural time-varying images, or the Fourier transform of the covariance matrix of natural time-varying images. \(|A(f, w)|\) is a cell’s response to sine wave pattern of spatial frequency \(f \) and modulated at temporal frequency \(w \).

- Given \(k^2 > 2 \), show that when \(\sigma^2 \gg \eta^2 \),
 \[|A(f, w)| \sim \frac{1}{\sqrt{\sigma^2(f, w)}} \]
 \[(6)\]

You can either show this analytically or illustrate this numerically.

- For certain given spatial frequency \(f \), the power spectrum \(\sigma^2 \sim \frac{1}{w^2} \), substitute this into equation (??), show how the \(|A|\) depends on the temporal frequency. Without losing generality, we can assume \(\nu^2 = 1 \), i.e., the unit of everything. Now for \(k^2 = 10 \) and \(\eta^2 = 0.02 \), plot \(|A|\) as a function of the temporal frequency \(w \) for \(w = 0.2Hz \) to \(w = 20Hz \). Especially, Comments on the behavior at low and high temporal frequency regions, explain intuitively why?

- As we mentioned in the class, that we sometimes approximate the above solution by
 \[|A(w)| \sim \frac{w}{(1 + w^2/\eta^2)^{3/2}} \]
 \[(7)\]

for \(w_0 \sim 5Hz \). Show that with some choices of \(k^2 \) and \(\eta^2 \), the rigorous solution in the previous bullet is close to this, especially when signal-to-noise ratio is high. You should hand in a plot with two curves and indicate clearly the parameters used.