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Abstract

We investigate it well-known LGN ion channel properties can facilitate information-
theoretic optimal coding through temporal decorrelation; and if so, whether the degree
of temporal decorrelation can be adapted dynamically to ensure such optimization
at longer time scales. Significant temporal decorrelation for time lags above 50 ms
is achievable in a LGN cell model with inputs generated from natural visual stimuli.
Dynamic decorrelation is obtainable through adaptive temporal filtering by varying
the resting membrane potential. We conclude that the biophysical properties of LGN
cells support the role of temporal decorrelation and enable a plausible feedback control
mechanism that dynamically adapt to changes in input statistics.



1 Introduction

Until recent years, the lateral geniculate nucleus (LGN) was commonly assumed a
relay station between retina and visual cortex, through which no significant trans-
formation of visual information happens beyond simple gain control (LGN cells fire
less number of spikes than its retinal inputs). However, if one examines the temporal
aspects of retinal and LGN cell responses, there are some important differences for
a wide range of operating conditions. The response of the LGN cells is much more
transient than the retinal ganglion cells; the LGN cells also perform a sharper tempo-
ral bandpass filtering of the incoming signal [6, 7]. LGN cells can fire in two distinct
modes of activity: tonic and bursting spikes, and it has been shown that both types
of spikes can carry visual information [4, 11]. Furthermore, recent evidence shows
that the temporal properties of the LGN response vary continuously with the degree
of bursting present in the spike train, making the extreme tonic/burst dichotomy
obsolete. In this way, LGN cells can work as tunable temporal filters, where the
tuning is given by modulatory control of the cells” membrane resting potential and
consequently the conductances and kinetics of the T-type Ca?* channels [10, 8]. The
modulatory control could come from the nonretinal input to the LGN. It is known
that retinal terminals represents only ~ 10 — 20 % of synaptic inputs onto LGN. The
nonretinal input derives from descending corticogeniculate axons, local feedback cir-
cuits, and ascending axons from the brainstem reticular formation. It was suggested
that the nonretinal input plays the role of a gain control which gates the information
flow through the LGN [14, 1, 5, 13].

We suggest that LGN can play an important role in the optimal coding of sensory
information in time — optimal from an information-theoretic point of view. Since
under natural viewing conditions, the visual signal sent to the LGN is temporally
redundant or inefficient, LGN can do a lots more than simple gain control. It has
been proposed earlier [2] that LGN is concerned with improving efficiency of visual
representation through temporal decorrelation. The present study investigates if the
well-known LGN ion channel properties, especially the T-type Ca?* current, can
facilitate such information-theoretic optimal coding; and if so, whether the degree of
temporal decorrelation can be adapted dynamically to ensure such optimization at
longer time scales. Three aspects are addressed: how the temporal decorrelation is
achieved, how fast the decorrelation mode is activated, and how efficient the LGN’s
coding is under different modulatory states.



2 Methods

2.1 The LGN cell model

We model the type of LGN cells which receive direct inputs from retina and send
output to visual cortex. The LGN cell model incorporates the quantitative kinetics of
the Ca?* channel and the Hodgkin-Huxley KT and Na® channels of active membrane

currents. The membrane potential V,,, changes according to

dV;,
T —(Un, +1x + Ip + Licar + Lppsp)/Cn (1)
in which Iy,, I, and I are the Nat, KT, and Ca®" currents, respectively. C, is
the membrane capacitance. All the channel properties are well known [9] and the

parameters are similar to a previous model [10]. The leak current is given by
Ileak - Gleak(vm — ‘/r) (2)

in which the leak conductance G is taken as a constant. The leakage reversal
potential V, is the only parameter controllable according to a simple measure of au-
tocorrelation of the cell’s output, and it is used to achieve dynamic temporal decor-
relation. The retinal input to LGN is modeled by the monosynaptic current Igpsp
generated by the input spike train according to an alpha function. When the LGN
cell has no retinal input, its resting membrane potential will be close but not equal
to the leakage reversal potential V,.. The effects of nonretinal input are reflected by
different V, values.

2.2 Input spike trains to LGN

The model LGN neuron is simulated with input stimuli generated from real-world
time-varying light intensities recorded by a moving camera [3]. The digitized light
intensity values around the center pixel were used to generate time series that were
then pre-processed to mimic the retinal ganglion cell responses (spatial filtering at
different scales, corresponding to different sizes of receptive fields). The resulting
signal was used to modulate the firing rate of non-homogeneous Poisson spikes that
generated the input spike trains to the LGN. The light intensity time series were
separated in two main groups with different degree of temporal correlation in order
to probe the model cell’s responses. The first group (I1) has very long-lasting temporal
correlations and was obtained by filtering through a large spatial receptive field, i.e.,
DOG filter at a low spatial frequency (~ 0.3 cycle/degree). The second one (I2)



has a very small temporal correlation and was obtained by filtering through a small
spatial receptive field, i.e., DOG filter at a high spatial frequency (~ 5 cycle/degree).
(For more details of the dependence of the temporal correlations on spatial scales,
see [3].) Additional pre-processing by mimicking the effect of temporal filtering at
the retina level almost completely decorrelated the time series from the second group
but introduced no significant temporal correlation change in the first group (for the
references on retina filtering, see [2]).

2.3 Tonic and bursting spikes

Hyperpolarization, achieved by controlling V,., results in an overall reduction of the
number of LGN output spikes. This is expected since lowering V,. will lower the gain
and/or threshold of the LGN cell in response to its input. But it is not a simple gain

control.
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Figure 1: Transition from tonic to burst spikes. Top pannel: input spike train
to LGN. Bottom pannel: LGN’s output spike train. At time ¢ = 3 seconds the
leakage reversal potential V. is changed from —60 to —80 mV. The activation of
the calcium dynamics is fast (~ 100 ms) such that the cell can produce bursts
very shortly after the transition.

More interestingly (Figure 1), the hyperpolarization activates the Ca?* channel
with a time constant of ~ 100 ms. Such activation generates bursting spikes in
addition to tonic spikes, resulting in temporal differentiation on the Ca** channel
time scale. When V,, = —60 mV, the cell fires tonic spikes, which almost replicate the
input spikes except missing one or two occasionally; when V, = —80 mV, the cell fires
burst spikes, which are a lots less frequent than the input and concentrated roughly
at where the input changes. We want to know how V, affects the overall temporal
encoding in LGN in a quantitative manner.



3 Results

3.1 How temporal decorrelation can be achieved

We use the autocorrelation function C'(7) to measure the temporal correlation of the
binned and mean-subtracted spike train S(t):
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in which <>; denotes averaging over time t. It is obvious that the function C(7)
equals to 1 when the time lag 7 = 0. In all the plots shown in the following figure, a
bin size of 50 ms is used for calculating C'(7). We have tried a bin size of 25 ms and
similar results were obtained.
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Figure 2: Decorrelation level dependence on leakage reversal potential. Left: the
top panel shows the autocorrelation function of the input spike train to the LGN
cell, the other 4 panels refer to the autocorrelation function of the LGN cell’s
spike train for different levels of the leakage reversal potential V,.; the highest
decorrelation level is achieved at V, ~ —80 mV. Right: the same as in the
right panels, with the exception that here the input spike train had no temporal
correlation and the output decorrelation is best achieved at V,. ~ —60 mV. The
autocorrelation was computed over segments of 256 seconds.

The Figure 2 shows the simulation result on how temporal decorrelation depends
on the leakage reversal potential V,.. Since the degree of correlation of the output is
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always relative to the input, the results for the two input spike trains (I1 and 12) are
shown, which simulate the changes of inputs statistics at a longer time scale. For all
tested natural stimuli, significant temporal decorrelation for time lags above 50 ms is
achievable through variable temporal filtering of the model by simply selecting a Vi
between slight-depolarization to hyper-polarization for each stimulus; in the former
case, the LGN cell relays uncorrelated input, and in the later case, decorrelates highly
correlated signals. The necessary V, for decorrelation has a monotonic relationship
to the cross-correlation at the Ca?* chanmnel time scale, which enables a plausible
feedback control on a longer time scale when input statistics change.

3.2 How fast the decorrelation mode is activated

To investigate how long it takes for the LGN cell model to switch from one mode to
another, we started the simulation with V, at —60 mV. At time equal to 3 seconds,
V, was set to —80 mV, such that the calcium dynamics is activated (Figure 1). It is
clear that in the normal range of input /zpgp, which has roughly 40 spikes per second,
the cell is hyperpolarized soon after (within ~ 100 ms) and the calcium channel gets
activated.

In this particular simulation, the input spike trains are generated from the highly
correlated time series (I1). As expected from the previous section, the autocorrelation
C(7) before the switch (V,, = —60 mV) has significant correlations over a long period
of time; and the autocorrelation C(7) long after the switch (V, = —80 mV) has no
significant correlations, i.e., the LGN output is decorrelated. The question is how fast
the decorrelation sets in.

To investigate that we need to calculate the time-dependent correlation function
C(t, 7) to measure the temporal correlation of the binned and mean-subtracted spike
train S(t):

Cltr) = <S({t+71)S(t) > @
< S(t)S(t) >

in which <>, denotes ensemble averaging over many trials with different input spike

trains (but the same statistics). Figure 3 shows the correlation function C(t, 7) before,
near, and after the V, switch. It is clear that the LGN cell starts decorrelating as
soon as 150 ms after the transition. This means that the temporal decorrelation by
hyperpolarization can play a role of dynamic gain control at ~ 100 ms time scale
which not only change the gain of LGN cells but optimize its information content
about the input.



; ;
t=1000ms |

W

T T
t=3150ms |

o

Correlation (t,1)

T T
t=5000ms |

—

100 300 500 700 900
Time lag T (ms)

Figure 3: Transition to the decorrelation mode. The LGN cell is simulated for
8 seconds with the correlated input spike train I1. As in Figure 1, at time equal
to 3 seconds, the leakage reversal potential V, is changed from —60 mV to —80
mV to test how fast the cell enters the decorrelation mode. Top panel, V, is
at —60 mV and the LGN output spike train has temporal correlations. Middle
panel, 150 ms after the change to V,, = —80 mV (¢ = 3150 ms), the LGN output
spike train is already decorrelated. Bottom panel: 2 seconds after the change,
the LGN cell keeps decorrelating the input spike train. The auto-correlation was
computed from an ensemble of 620 trials of 8 seconds long, each from a different
light intensity segment. A bin size of 50 ms is used for calculating C(¢,7).

3.3 How efficient the LGN’s coding is

In this section we investigate how the coding efficiency of the LGN cell is affected
in the two activity modes. Information measures are employed to address this issue
[12]. The measures were computed according to the following formulas. The coding
efficiency is measured by the mutual information M:

M=T-N (5)

in which the total information 7" and the noise information /N are

T=-— Z P(W)log,P(W) N =-— <Z P(W|t)10g2P(W|t)> (6)
W w ¢

The P(W) is the probability of the 10 bits word W obtained by digitizing the LGN
output spike train with a bin width of 10 ms. A base 3 was used to discriminate
from O to 2 spikes per bin. The input to LGN used for the computation of the total
information consisted of two spike trains, each 2,200 seconds long, that were gener-
ated from two distinct (correlated or decorrelated) nonrepeated segments of natural
image light intensity. For the computation of the noise information, the correlated
input (I1) ensemble consisted of 400 realizations of nonhomogeneous poisson spikes,
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each 64 seconds long, generated from a single 64 seconds segment of correlated light
intensity. Similarly, the decorrelated input (I2) ensemble was generated from a 64
seconds segment of decorrelated light intensity. The P(W|t) is the probability of the
10 bits word W at a given time ¢ and ( ), denotes averaging over time.

Table 1: The total, mutual, and noise information of LGN output spike train
for different inputs and at different leakage reversal potentials. The spike rate
is given in spikes per second (Hz) and the information quantities is in bits per
spike. The estimated error for the information is about 1072 bits/spike.

V: (mV) | Spike Rate | Total | Noise | Mutual

-60 24.60( 3.10 2.65 0.45

11 -80 6.47| 5.80 4.80 1.00
-60 24.90( 3.10 2.71 0.39

12 -80 6.66| 5.22 4.92 0.30

The results are shown in Table 1. Overall the results indicate that a higher
efficiency of coding can be achieved for the two types of visual inputs by setting the
leakage reversal potential at different levels: for the input with long lasting temporal
correlation (I1), setting V, to —80 mV ensures that the corresponding LGN output
is decorrelated and improves the efficiency of coding from 0.45 bits/spike to 1.00
bits/spike; for the input with little temporal correlation (I12), setting V, to —60 mV
ensures that the corresponding LGN output is decorrelated and improves the efficiency
of coding from 0.30 bits/spike to 0.39 bits/spike. It is important to notice that the
absolute information rate (bits per second) is always greater for V, = —60 mV,
especially because the firing rate of the cell for V, = —60 mV is about 4 times higher
than for V,, = —80 mV. In other words, while the decorrelation increases the amount
of information per spike, the total information available in the spike train is still
smaller than in the case of V, = —60 mV. We argue that even if this is so, the
amount or type of information about the input available in the decorrelated spike
train might be already sufficient for certain sensory based decisions. For example, we
computed the squared reconstruction errors, [(|I1 —Ir|)/|I1[]?, where Ir is the optimal
linear reconstruction of the light intensity input I1, given by applying a Wiener filter
to the LGN’s output spike train. The errors for both cases V, = —60 mV and —80
mV were 0.06 and 0.10 respectively. The amount of information in the decorrelated
spike train is comparable with the one from the cell at V, = —60 mV, even though in
the former case the firing rate has been reduced by four times.



4 Conclusion and Discussion

Biophysical properties of LGN cells support the role of temporal decorrelation which
improves efficiency of information processing. This enables a plausible feedback con-
trol mechanism on a longer time scale when input statistics change.

If the goal of the LGN is to improve coding efficiency, our work places then
the following experimental hypothesis to be tested in behaving animals: the resting
membrane potential of LGN relay cells and the tonic/burst characteristics of their
spike trains should depend on the temporal correlations of the visual stimulus and on
the task demands.
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