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Abstract

Natural time-varying images possess significant temporal correlations when sampled frame
by frame by the photoreceptors. These correlations persist even after retinal processing and
hence, under natural activation conditions, the signal sent to the lateral geniculate nucleus is
temporally redundant or inefficient. We explore the hypothesis that the LGN is concerned,
among other things, with improving efficiency of visual representation through active tempo-
ral decorrelation of the retinal signal much in the same way that the retina improves efficiency
by spatially decorrelating incoming images. Using some recently measured statistical proper-
ties of time-varying images, we predict the spatio-temporal receptive fields that achieve this
decorrelation. It is shown that, because of neuronal nonlinearities, temporal decorrelation
requires two response types, the lagged and nonlagged, just as spatial decorrelation requires
on and off response types. The tuning and response properties of the predicted LGN cells

compare quantitatively well with what is observed in recent physiological experiments.



Introduction

All retinal ganglion cells project heavily to the lateral geniculate nucleus, or LGN. With few
exceptions, each geniculate cell receives its innervation from a single or a few retinal ganglion
cells of the same class, and the spatial response properties of these geniculate neurons are
essentially the same as those of their retinal counterparts with closely overlapping receptive
fields (Hubel and Wiesel 1961; Singer and Creutzfeldt 1970; Cleland et al. 1971, So and
Shapley 1979). Until recent years, it was commonly assumed that there is no significant
receptive field transformation in the relay of retinal information to the cortex through the
LGN.

However, if one examines the temporal aspects of retinal and LGN cell responses, there
are some important differences for a wide range of operating conditions. The response of
the LGN cells is much more transient than the ganglion cells, and their firing rates are
lower; the LGN cells also perform a sharper temporal bandpass filtering of the incoming
signal (Kaplan and Shapley 1982; Levine and Troy 1986). In addition, it has become clear
recently that there could be two functional classes of LGN cells that differ in the phase of
their temporal response: the lagged and nonlagged cells; the lagged cells have no counter
part among retinal ganglion cells (Mastronarde 1987a,b; Saul and Humphrey 1990; Hartveit
1992). These observations, among others, confirm that the LGN is a computationally rich
and exciting area to study. It is also an area that we believe is likely to be understood — just
like the retina and primary visual cortex — from first principles of information processing
since it is a relatively early stage in the visual pathway. In this paper we have taken a first
step in this direction by proposing a quantitative theory of the LGN based on the principle
of efficient coding.”

Earlier, it was proposed that the purpose of retinal processing is to improve the efficiency
of visual representation by recoding the input into a spatially decorrelated form (Atick and
Redlich 1990, 1992). This hypothesis was shown to lead to a quantitative theory of retinal
processing that predicts spatio-chromatic receptive fields of ganglion cells that compare well
with experimental data for the entire range of adaptation levels (Atick and Redlich 1992;
Atick et al. 1992). In other works, the decorrelation dynamics (Dong 1993a,b) of lateral
interaction between orientation selective cells in the early visual cortex was shown to yield
quantitative predictions about orientation contrast, adaptation, and development of orien-

tation selectivity which are in good agreement with experiments (Dong 1993b, 1994). It

*This principle states that the purpose of early sensory processing is to recode incoming signals into a
redundancy reduced or efficient representation (Attneave 1954; Barlow 1961; Linsker 1989; Atick and Redlich
1990; Atick 1992a,b). The advantages of efficiency of information representation in the nervous system are
numerous and they include dynamic range savings as well as cognitive advantages. What is most interesting
about this principle is that it is predictive: given a source of inefficiency in an input signal (e.g. pairwise
correlations) one predicts mathematical transforms that eliminate this inefficiency (e.g. decorrelate), and
these can then be compared with the signal transformations observed in real experiments.



was also shown to account well for cortical color adaptation and binocular coding (Atick et
al. 1993; Li and Atick 1994). However, all sources of inefficiency explicitly considered thus
far are related to spatial correlations or correlations between different cells. What about
correlations in the time domain or more generally spatio-temporal correlations?

In natural time-varying images, temporal correlations are very significant. It is com-
pelling to believe that the visual pathway tries to improve efficiency by eliminating temporal
correlations just like it seems to do with spatial correlations. Computationally, this pro-
cess in time is more complex than in space. This may account for the fact that while the
retina performs excellent spatial decorrelation, it does not do a good job in the temporal
domain, which means that signals from the retina still contain excess temporal correlations.
This leads us to the proposal that one of the main purposes of the LGN processing is to
complete the temporal decorrelation of the retinal signal. We derive the spatio-temporal
receptive fields (impulse response) for LGN cells based on this theory and show that the pre-
dicted tuning curves and response properties compare very well with the data of Saul and
Humphrey (1990). Taking into account the hardware restriction of nonlinearity of real neu-
rons (rectification), our analysis predicts four functionally distinct LGN cell classes lagged
and nonlagged, on and off-center cells.

These results have been presented previously in abstract form (Dong and Atick, 1994a).

Methods

1. Receptive Fields from Efficient Coding: Linear case.

To code efficiently in the regime of high signal to noise, images must first be transformed
into a representation where pixels are as statistically independent from each other as possible
(factorial representation) (Barlow 1989; Atick 1992b). The dominant source of statistical
dependence in natural visual input is due to pairwise pixel correlations (Field 1987; Hancock
et al. 1992; Ruderman and Bialek 1994) and inter-frame correlations (Dong and Atick 1995).
Nearby pixels in space and time in natural time-varying images tend to be very similar in
their visual appearance, giving a luminosity profile which changes gradually in space-time
and only abruptly at edges or motion ridges. Finding a more efficient representation — where
correlations are absent — is tantamount to discovering the “visual vocabulary” that most
compactly describes the world. What is interesting is that this vocabulary is predictable
from measured properties of natural time-varying images.

We begin by mathematically formulating the problem of spatio-temporal decorrelation
in the linear approximation. This means that the input signal S(x’,#') — which is given by
the photoreceptor activity at position x’ on the retina and at time ¢’ — is assumed to be
linearly transformed to produce the LGN output signal O(x,1). Of course, real LGN cells are
not linear and, in fact, as we shall see below, it is when we take the nonlinearities correctly

into account that we discover a diversity in their temporal properties. However, much can



be learned from the linear approximation since above threshold and below saturation the
response of many LGN cells is well approximated by a linear function. Also, after we derive
some interesting predictions from the linear analysis we shall use the results as building

blocks to arrive at the nonlinear LGN code.

1.1 Spatio-temporal decorrelation & temporal tuning

With the assumption of linearity
O(x,t) = /dg’dt’ K(x,x';t,¢)S(x', 1),

= K-S, (1)

where K = K (x,x';,1') is the spatio-temporal kernel or receptive field and - denotes spatio-
temporal convolution as defined above. The output O(x,t) is directly related to the firing
frequency of a cell in spikes/sec. This is a good characterization of the temporal response
of spiking LGN cells since the time scales of their kernels are relatively long (hundreds of
milliseconds) in comparison with the interspike time interval (several milliseconds).

The input signal S(x’,1') possesses pairwise correlations captured by the spatio-temporal
correlation matrix:

R(x,x";1,t") =< S(x,4)S(x, ') >, (2)
in which brackets denote ensemble averaging. For the output to be decorrelated, z.e. activities
of cells at different positions and time are uncorrelated, the transformation K must be chosen
so as to achieve:

< O(x,)0(X, 1) >=6(x — X, t — 1), (3)
where 6(x,1) is the Kronecker delta function which is zero everywhere except for x = 0 and
t = 0 and is normalized to 1. Substituting (1) into (3) we get, in matrix notation, the

following equation for the decorrelating transform K
K-R-K' =1. (4)

Assuming translation invariance, i.e., K(x,x’;1,1') = K(x —x/,t —t') and R(x,x;t,t') =
R(x —x',t—1") — which is a reasonable approximation for foveal vision and is generally true

for natural time-varying images— equation (4) can be rewritten in Fourier space as
K(f,w) R(f,w) K*(Tw) = 1. (5)

in which f and w are the spatial wave vector and temporal frequency, respectively, and *
denotes complex conjugation. K (f,w) is the spatio-temporal filter and R(f,w) is the so-
called power spectrum of time varying-images, and they are simply the Fourier transforms of

K(x,t) and R(x,t), respectively. The modulus of the solution to equation (5) is simply

. 1
| K (L w)| = N (6)



In a linear system, this modulus is proportional to the cell’s response to a sinewave of
spatial frequency f modulated at temporal frequency w. This cell produces an output whose
2 =

power spectrum, in response to natural time-varying images, is flat or “white” (|O(f, w)
L (f, w f,w) = 1). Equation redicts the spatio-temporal frequency tuning if R(f, w
K (8, ) R(E,w) = 1). Equation (6) predicts the spatio-temporal frequency tuning if (f, )

is known.
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Figure 1: top: Measured temporal power spectrum of natural time-varying images from
Dong and Atick (1995) showing that R(0,w) ~ 1/w? (solid curve) is a good approxi-
mation to the spectrum at low spatial frequencies. The value of this power spectrum
is relative. The value in the space-time domain, which is of the correlation matrix,
illustrates how strong the correlation is: in our measurements on 8-bits gray scale time-
varying images, the correlation of a pixel, for example, slowly decreases from 2 x 103 at
t = 0 (corresponding to standard deviation of 45) to 1 x 10% at ¢ = 1 second. bottom:
Predicted LGN temporal filter (curve I) which, in the low frequency regime, is given by
R(0, w)_% (curve IT) while at high frequency asymptotes the lowpass filter (curve IIT)
which suppresses noise (w, = 5.5 Hz).

R(f,w) was recently measured by Dong and Atick (1995). These measurements (see
Figure 1-top) show that in the limit f — 0, R(0, w) reduces to

R(0, 1) ~ —. (1)

w



This immediately predicts:
1

|K(0,w)| = o) w. (8)

The data on typical LGN neurons supports the presence of a linear regime at high light level
and at low temporal frequency (Saul and Humphrey 1990).

To quantitatively compare our predictions with available experimental data we need to

take noise into account, since in reality the input includes not only the signal S but also

some noise N. The filter K derived above applies to and decorrelates both the signal and

noise

. 1 1

|A (Lw” = \/E - \/Wv (9)
in which S%(f,w) is the power spectrum of the signal and N? is the noise power. At high
temporal frequency and at low light level the noise is significant and this whitening filter
will magnify noise relative to the signal. To code efficiently in the presence of noise, a
lowpass filter is needed, in addition to decorrelation, to guarantee that no significant noise
is passed to the output: z.e., “smoothing” when noise is significant and decorrelation when
the signal to noise ratio is high. Both smoothing and decorrelation contribute to efficiency,
since they compress the signal by eliminating noise and correlations, respectively. * The
simplest smoothing filter is the so-called Wiener filter (Press et al. 1988), which is the filter
M which when applied to the corrupted signal, K(S+ N), produces a signal that is as close

as possible to K.S, where “close” is measured in the least-square sense, 1.¢.,
= /dfdw|MK(S 4+ N) - KS|? (10)

is minimized. It is straight forward to show that the optimal noise suppressing solution
% /6M =0 is
S? R— N?
M = = ) 11
S? 4+ N? R (11)

This smoothing filter approaches zero at high noise level and one at low noise level.

TOur measurements also confirm the power spectrum of snap-shot images first measured by Field (1987)
who discovered that R(f) ~ ﬁ, which led to the prediction that the spatial contrast sensitivity (in the

regime where noise can be ignored) of ganglion cells (or equivalently of LGN cells) is |K (f)| ~ [f| (Atick and
Redlich 1992).

{The principle of efficient coding in the presence of noise has been formulated carefully in (Atick and
Redlich 1990), where the smoothing and decorrelation processes are shown to be two limits of optimization
of the mutual information of the output relative to the pure input signal subject to certain constraints. It
was further shown, that — contrary to the decorrelating filter — the smoothing filter predicted depends on
the details of the constraints imposed. The precise set of constraints 1s not clear at the moment and hence
the details of the lowpass filter are somewhat flexible. However, as long as the lowpass filter has a proper
cut-off frequency, the detailed form of it does not change the final result significantly. That is why we leave
the cut-off frequency as a free parameter, which is the only parameter in our theory.



So taking noise into consideration, we predict that the spatio-temporal LGN filter in the

linear regime is the product of the decorrelation filter and the smoothing filter:

1 1 R—N?
:\/EM:\/E — (12)

To exhibit the temporal behavior of this filter explicitly we need an explicit expression of

[ K (L, w)]

the noise.

30

20

10 +

Response (spikes/second)

SR

0.1 1 10
Temporal frequency w (Hz)

Figure 2: Comparison between predicted temporal tuning curve (solid curve) and LGN
data (diamonds) from a typical cell as measured by Saul and Humphrey (1990). The
predicted curve is generated from equation (14) with w, = 5.5 Hz.

We assume the noise is temporal white noise, thus in the presence of noise,

R(w) ~ = 4 = (13)

2 27
w w?

for some characteristic noise frequency w.. Substituting (13) into (12) we finally predict:

w

(il "

valid for all w. We have plotted this filter in Figure 1-bottom, curve I. At low frequency
it is completely determined by the power spectrum of natural time-varying images and is
linear in w (curve II); at high frequency it asymptotes the smoothing filter (curve III) and
cuts off as the noise becomes significant. In Figure 2 we have superimposed the temporal
tuning data of a typical cat LGN cell from Saul and Humphrey (1990) on our predicted
filter, equation (14). The noise cutoff w,. is the only parameter in (14), the curve plotted
is for w, = 5.5 Hz, which shows remarkable quantitative agreement with the experimental
data.



1.2 Spatio-temporal Receptive Fields

To predict the receptive fields we need to determine not only the modulus of the solution,
|K(f,w)|, but also the phase before we can Fourier transform back to space-time. The
problem is that the decorrelation condition, equation (5), determines the solution only up to
an a priori arbitrary phase ®(f, w). Since given a solution K(f,w), we can always construct
another decorrelating solution K (f,w) = e@d’w)]&’(f, w), which will satisfy (5).

Thus, there is a family of solutions that are all equivalent in their decorrelation properties
but differ dramatically in their spatio-temporal profiles. The solution that should be selected
is the one that satisfies the obvious biological and physical constraints on the problem. For
example, since K(x,t) is the transfer function of a physical system, it ought to obey the
constraint of causality (i.e. K(x,7) = 0 for ¢ < 0). Not all solutions to equation (5) do
that. As is shown in Appendix A, imposing the constraint of causality and minimum phase
eliminates the temporal phase arbitrariness (up to a constant time delay) and uniquely
determines the solution up to a spatial phase ®(f), thus, reduces the size of the family of
solutions of (5).

If among this reduced family of solutions one looks for solutions that have no directional
bias, i.c. even-symmetric solutions (K (x,t) = K(—x,t)) %, then as shown in Appendix A,
there are only two solutions that are allowed, and they are related to each other by overall
multiplication of minus sign.

Ideally, this type of cell alone is enough to achieve a decorrelated spatio-temporal rep-
resentation of natural time-varying images. However, this is true only for a purely linear
representation and we know that there are important nonlinearities in the visual pathway
leading to the LGN. Next, we examine the effects of these nonlinearities on the predicted
LGN coding. We will see that while the nonlinearities do not significantly affect the tuning
curves of the cells they do have drastic effects on their response phase and they lead to

functional diversity according to phase.

2. Effects of nonlinearities: Lagged and nonlagged cells

Real neurons are not linear units; instead their input-output relationships tend to exhibit
significant nonlinearities when the entire range of input signal is considered. For our analysis

here, the most relevant feature of this nonlinearity is rectification; 7.e., only inputs above

certain threshold generate action potentials. Actually, for LGN neurons, two types of recti-
fication have to be taken into account. First, the input to the LGN — which is the retinal
output — is rectified and second the LGN output itself is rectified (see Figure 3).

Before we examine the effects of this two stage rectification on the LGN coding we shall

make one simplifying assumption, namely, that spatial and temporal decorrelations are done

%In general this requirement is less restrictive than rotational symmetry but is equivalent to it if R(x,?)
is rotationally symmetric.



separately at two different stages along the visual pathway. In other words, we will assume
that the output of retinal ganglion cells is fully decorrelated spatially, but that the output of
any given ganglion cell still possesses significant correlations over time. The LGN is assumed
to fully eliminate these temporal correlations but does nothing in space. In the real visual
pathway, this spatio-temporal separation is not exactly true, since ganglion cells attempt to
partially decorrelate in time simultaneously with their decorrelation in space. Nevertheless,
this is not a bad first approximation since it is clear from the data (Levine and Troy 1986,
Victor 1987, Kaplan et al. 1993) that in the temporal domain the bandpass filtering of retinal
cells is rather flat (and hence not much temporal decorrelation there) compared to the LGN;
while in the spatial domain, the LGN cells have receptive fields that are very similar to
retinal receptive fields (and hence not much additional spatial processing is performed at
LGN). In terms of the input power spectrum, this simplification is also justified since the
power spectrum, dominated by motions of objects in visual scenes relative to the observer,

is also approximately separable in space and time (Dong and Atick 1994).
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Figure 3: Schematic of the relevant processing stages that we believe the visual input
goes through as it emerges from the LGN. In the first stage, the signal is processed by
the retinal kernel K, .44 to mostly eliminate spatial correlations, it is then rectified to
produce the on and off channels which constitute the input to the LGN. The signal is
further processed by Kj,, in the LGN to complete its spatio-temporal decorrelation and
then rectified. The final result is that there are four cell types: on and off lagged (X)
and nonlagged (Xx) as indicated.

We should emphasize that the assumption of separability is made for simplification of
discussion in this section and is not necessary. In fact, the full and careful treatment of
the spatio-temporal decorrelation without this assumption is presented in Appendix B. The
results, however, do not deviate significantly from those derived here.

The retinal output, because of rectification, has to come in two varieties, the on and off
type given by

O+ = K, cting - S H(£K ctina - S), (15)



in which H is the Heaviside step function:

1, ifz>0;

H(z)=+¢_ . ' 16

() {0, if x <0. (16)

otherwise the retina loses incoming information." In this approximation, an on-center
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Figure 4: top: A cross section of the retinal kernel in space. This kernel was computed to
spatially decorrelate incoming images given a small level of noise. The units of distance
are 1n pixels. bottom: The kernel that decorrelates natural signals in time, it is given by
the analytic formula Kjg, () = #(1 — mw.t)e™?™<! where w, is the characteristic noise
cutoff (w. = 5.5 Hz in the plot). This kernel is derived in Appendix A as the optimal
solution that decorrelates a signal with power spectrum 1/w? + 1/w? and it suppresses
noise above w,. The units of time are in increments of 33 ms. Thus the receptive field
is about 8 pixels wide and persists in time for more than 200 ms.

neuron responds linearly only when its input is above 0, but it loses information when
K. ctina - S is negative. This information is recovered by the off channel such that O, +
(—=O_) = K,ctina - S, and hence no information is lost by the combined system. In this

section, with the assumption of separability, the retinal kernel K, ;. is given simply by:

Kretina (Xa t) = ](Tetina(X)5(t)7 (17)

TIn general, cells have thresholds that differ from zero and in detailed comparison with experiments these
thresholds may have to be taken into account. For our analysis here we will continue to ignore them for
simplicity.




where K,ciinq(x) is the decorrelating spatial kernel which we computed from spatial properties
of natural images; a cross section of this kernel is given in Figure 4-top.

The second source of rectification is at the level of the LGN output. The LGN processes
the retinal output Oy, through a kernel K;,,, which performs the temporal decorrelation of
the signal and then rectifies (see Figure 3). In general, the retinal on and off channels could
be mixed in the input to the LGN. However, in Appendix B, we find that the mixing is weak
in the sense that for any LGN cell either the on or off input dominates. Here, we continue

to make the assumption of separability in which case the predicted LGN cell outputs are:

ON = —I'Klgn -0 H(+Klgn : 0)7
Or, = _Klgn -0 H(_Klgn ’ O)v (18)

where O stands for the retinal signal which comes in two varieties given by O; or O_,
equation (15), while
Kign(x,1) = Kign(1)o(x) (19)

with Kj,,(t) the temporal decorrelating kernel exhibited in Figure 4-bottom. This kernel is
given by the simple analytic formula (35) derived in Appendix A.

Thus for any given retinal output (on or off) there are two types of LGN cells whose
output we have labelled as Op and Oy for lagged and nonlagged in anticipation of their
response properties which we will exhibit in the next section. To summarize, because of
double rectification, there must be four LGN cell types which we denote by: on-center Xy,
off-center Xy, on-center X, and off-center X, following the notation of Saul and Humphrey
(1990). But we should emphasize that these four types of response are not much different:
they all have the same spatial and temporal filters, only have sign flipped and output clipped
differently.

Results

We start by calculating the response of the four predicted cell types to a sinusoidally modu-
lated spot stimulus on the central region of the receptive field, i.e. S(x,1) = 6(x)sin(27 fot)
in which fp is the modulation frequency. This is the stimulus used by Saul and Humphrey
(1990) to classify LGN cells into four cell types.

Figure 5 helps us to get some insight into what the four cells are coding, in which we
compute their response timing (phase) relative to the stimuli of same modulation frequency.
In this figure, ¢ is the phase of the response, which is defined as the phase of the Fourier
component of frequency f; of the output relative to the input signal. The central spot
luminance is modulated at fo = 1 Hz as shown at the bottom of the figure. First we can see
that all four cell types are indeed distinct and that those labelled lagged have an excitatory

response which is delayed relative to the nonlagged ones. The on-Xy cell fires when the

10



stimulus is bright and reaches its peak before the peak of the stimulus (thus a phase lead).
The on-X7, cell lags behind, fires when the luminance decreases (thus a phase lag). Yet the
the off- Xy cell lags further whose firing peaks after the on- X, and just before the luminance
valley. Finally, the off-X}, fires when the luminance increases again. Figure 6 shows the
predicted results at three different modulation frequencies. Our Figure 5 and 6 correspond
well with the response histograms of nonlagged and lagged X cells in Figure 5 and 6 of Saul
and Humphrey (1990).
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Figure 5: Predicted temporal response of the four cell types to a temporally modulated
sinusoidal stimulus at 1 Hz on the receptive field center. ¢ is the phase of the response
without propagation delay. The cells labelled X are lagged about quarter cycle in their
response relative to the Xy cells. The off-X cells are behind corresponding on-X cells
by half cycle. This illustrates very clearly the need for the four types of cells and that
the on-Xn (X1 ) can be thought of as signalling light increment (decrement) when center
light level is above surround while off-X n (X1 ) signals light decrement (increment) when
center light level is below surround. This figure should be compared with the Figure 5
in Saul and Humphrey (1990). The same w, = 5.5 Hz is used for all the figures except
when it is indicated otherwise.

It is clear that the four cell types are necessary if one is not to lose information. This

example illustrates the primitive “vocabulary” of the LGN: on-Xy — increment of light
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Figure 6: Predicted temporal response of the four cell types to a temporally modulated
sinusoidal stimulus at three different frequencies presented on the receptive field center.
This shows that the four different cell types have distinct response properties and that
cells labelled X are lagged in their response relative to the Xy cells. ¢ is the phase
of the response without propagation delay. The phase lag of X relative to the Xy
increases with increasing temporal modulation frequency. The response of the on-X
lagged and nonlagged cells in this figure should be compared with the corresponding
histograms in Figure 6 in Saul and Humphrey (1990) to see that they indeed correspond

well with what is found in experiments.
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in center above surround, on- X7 — decrement of light in center above surround, off- X —
decrement of light in center below surround, and off- X; — increment of light in center below
surround. | This description of the world is complete and is more efficient (e.g. signal can
be represented by smaller total number of spikes) than signaling the value of light at each

frame.
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Figure 7: Temporal tuning as computed from the nonlinear theory (solid curves) for
nonlagged (top) and lagged (bottom) cells. For comparison we have also plotted the
linear result (dashed curves) as derived from the analytic formula (14). This shows that
the linear approximation is not very far from the nonlinear result for the nonlagged cells

but that there are significant deviations for the lagged tuning. The most important
difference is that the peak is shifted towards smaller frequency for the lagged cells.

In section two we derived analytically the temporal tuning function for LGN cells in the
linear approximation. For the nonlinear system, we have computed numerically the tuning
curves for Xy and X, cells. The results are shown in Figure 7, where we have also plotted
the analytic result, equation (14), from the linear system for comparison. As we can see

from the top figure, the linear result is very close to the true tuning curve for the Xy cells.

lOf course, for the real LGN cells, this notion should be modified a little bit since they do have some level
of spontaneous discharge and do not spatially or temporally clip off in a clean-cut fashion. For example, the
real on-Xy response extends a little bit on both side of our predict response histogram.
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Thus the successes of comparison with the experimental data of Saul and Humphrey (1990)
that we achieved in Figure 2 will still be valid for the true nonlinear result. On the other
hand, the tuning curve for X deviates from the linear result by some small but significant
amount. One prediction that this analysis makes is that the peak of the temporal response
for a lagged cell is shifted towards smaller frequency relative to that of a nonlagged cell but

the overall shapes of their tuning curves are still similar.
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Figure 8: top: Predicted response phase, in cycles, for X; and Xy from the nonlinear
theory (solid curves) versus the linear result (dashed line). As shown in Appendix A,
the linear theory predicts a phase equation of the form ¢(w) = % arctan(w/w,) + 1/4
with — in the second term for nonlagged and + for lagged. botlom: Comparison between
predicted response phases (solid curves) and the data from Saul and Humphrey (record
RF21: cell 04M, 07C, 08P, 03M, 06F, and 09J). The phases are plotted with error bars
(averaged over three Xy cells and three Xy cells, respectively). We have taken into
account the overall delay from the time when light is presented to the time the signal
arrives at the LGN (propagation delay) in the experimental data. Thus the phases
plotted are the experimental data minus T'w for a delay time 7" = 25 ms for all cells.
In this fit, w, is 6.3 Hz for X and 4.4 Hz for X . This is justified since Xy, cells have

smaller optimal temporal frequency on average (see text).

We have computed the response phase of the lagged and nonlagged cells as a function

of temporal frequency. In Appendix B, we derive analytic formulae for the phase of the
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response for the nonlagged and lagged cells in the linear approximation. In Figure 8 the
numerical results for this phase of response are shown together with the analytic curves.
The analytic result deviates significantly from the corresponding nonlinear result mostly at
low frequency but in general it is a simple first approximation to the phase. Furthermore,
we can see that the relative phase difference between nonlagged and lagged cells increases
from quarter cycle at low frequency to half cycle at high frequency. In the bottom portion
of this figure we have compared these phases to what is measured by Saul and Humphrey
(data provided to us in personal communications). The predictions are definitely consistent
with the measurements, especially in the frequency range of 1 to 10 Hz where the tuning
curve peaks. We should emphasize that we have taken into account the overall delay from
the time when light is presented to the time the signal arrives at the LGN and deducted the
phase corresponding this time delay from the experimental data. This typical propagation

delay time is the same for all lagged and nonlagged cells.

30

25 | we = 5.6
20 |
15 |
10 |

5

Response (spikes/second)

0 2 4 6 8 10 12
Temporal frequency w (Hz)

Figure 9: The predicted scaling behaviour of tuning curve for three different w, (2.8,
4.2, 5.6 Hz, respectively). For higher noise level, thus smaller w,, the maximal response
amplitude and optimal temporal frequency are smaller and scale with w.; so the peaks
of tuning curves lie on a straight line (the dashed line). The scaling also holds for other
points on the tuning curve, for example, the half fall points lie on a straight line as well
(the dotted line). This cell is the same as in Figure 2 when w, = 5.5 Hz.

Another powerful prediction of our theory is that: everything scales according to a single
parameter — w, which is inversely proportional to the noise level. For example, the maximal
response amplitude A,,, optimal temporal frequency w,,, and half fall temporal frequency

wy, are related to w,. simply as follows

A, = Aw.
1
Wy, = —=W, 20
7 (20)
wy, = 1.9w,

in which A is independent of noise level. If a cell is adapted to different noise level, thus

different w,, its tuning curve will just scale accordingly. The theoretical prediction of scaling
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behaviour is illustrated in Figure 9. We see that when the noise level becomes higher,
the tuning curve shifts to lower temporal frequency, thus the responses to higher frequencies
decrease significantly whereas the responses to lower frequencies do not change much.” This
scaling behaviour could be partially true for a population of cells if they were similar cells
and had similar signal inputs but had different noise levels." The response phase scales with
w, as well. For different w,., the phase curves will be the same if the temporal frequency
is plotted in unit of w.. There are not enough data available to fully test this at present
time. We are looking forward to new experimental results to compare with our theoretical

predictions.

Discussion

At this moment, it is not entirely clear whether nonlagged and lagged responses represent
different cell classes (Mastronarde 1987a,b; Humphrey and Weller, 1988) or different response
modes of the same cells (Uhlrich et al. 1990) or both. Either interpretation is consistent
with the predictions of efficient coding, since efficiency dictates the need for lagged and
nonlagged “responses” without specifying how these should be accomplished. Although we
have used the terminology lagged and nonlagged “cells” for concreteness throughout the
paper, it should be understood that we really mean “responses”.

We need to emphasize that what we presented in this paper is only the first step towards
a complete theory of the LGN function. After all, the LGN receives massive feedback from
the cortex and the brain stem and the computational purpose of such feedback has to be
accounted for by the theory. This feedback is known to alter the temporal properties of
lagged and nonlagged cells depending on certain conditions such as the state of arousal of
the animal (Uhlrich et al. 1990; Humphrey and Saul 1992; Hartveit and Heggelund 1993;
Kaplan et al. 1993). While at the moment our theory does not include this feedback, there
are some very tantalizing results about its computational purpose that emerge from closer
examination of the principle of efficient coding in the presence of noise.

Generally speaking, we believe the feedback controls the degree of temporal decorrelation
of the signal. The need to do this is a consequence of the fact that, in the presence of noise,
efficient coding requires decorrelation where the signal is strong and smoothing where noise
is significant. Under the earlier condition the LGN needs to decorrelate more while under
the latter the LGN needs to decorrelate less. The end result is that by chosing the correct

**For real neurons which are not entirely transient, i.e., their responses contain DC components, such
shift will change the tuning curve from bandpass to lowpass filter. Of course, the scaling will only hold
approximately in that case.

1 The average wy, and A, of X cells are smaller than those of Xy cells by roughly the same factor
(Table 2, Saul and Humphrey 1990). If the lagged cells were more noisy than the nonlagged cells, it would
be a confirmation of our scaling prediction.
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degree of decorrelation the signal is compressed by elimination of what is irrelevant without
significant loss of information.

In this way of looking at things, the feedback must be signalling to the LGN what it
should treat as “noise” and what it should treat as “signal”. Noise is then not just quantum
noise or other intrinsic fluctuations in the input but is also what the animal — in a given
state of “adaptation” — should consider as irrelevant. This certainly depends on the state of
arousal or the behavioral state of the animal and involves higher processing. However, once
the signature of “noise” is given, the system can adapt to achieve the degree of bandpass
filtering desired (or equivalently, the degree of lowpass filtering). We intend to explore such
dynamic theory of the LGN in a future publication.

Actually, the idea that the feedback plays the role of a gain control which gates the
information flow through the LGN is not new; it was proposed earlier by several groups
(Singer 1977; Crick 1984; Harth and Unnikrishnan 1985; Sherman and Koch 1986). What
is new here is the suggestion that the gating is accomplished through controlling the degree
of temporal decorrelation of the signal.

Another limitation of the analysis presented here is that it deals only with the so called
X cells which, apart from rectification, linearly integrate signals over their receptive fields.
The other cell variety known in the cat LGN (and retina), the Y cells, exhibit significant
nonlinearities even in regimes where the X cells linearize. At the moment we do not have
a predictive theory of Y cell coding neither in space nor in time. There are some other
suggestions about the different roles of X and Y cells in temporal information processing
(e.g. Van Essen and Anderson 1990; Li 1992) but none have made quantitative predictions
or have explained the lagged and nonlagged cell types in LGN.

Finally, it was previously suggested that lagged and nonlagged cells in the LGN provide
the building blocks for directionally selective simple cells and that this may be the funda-
mental reason why such functional diversity exists in the LGN (Saul and Humphrey 1990).
In fact there is now evidence showing that some simple cells in area 17 receive inputs from
both lagged and nonlagged LGN cells (Saul and Humphrey 1992). While we fully agree that
the outputs of lagged and nonlagged cell pairs are well suited for building in a simple way
directionally selective units at the next stage we do not believe this is the primary reason
functional diversity exists in the LGN. Generally speaking, efficient representations can be
argued to simplify the computations involved in a multitude of cognitive tasks not just direc-
tion selectivity and besides by adopting efficiency as the underlying principle we are able to
use properties of natural signals to make quantitative predictions, which is ultimately what

a theory is about.
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Appendix A: Causality & Analytic Solutions

In this appendix we show how to construct the causal solution to Equation (5) and illustrate

the procedure by applying it in the limit of zero spatial frequency (where closed form formula
for R(0,w) exists) to derive analytic formulas for K(w), ¢(w) and K ().

The Weiner-Hopf Technique

In general, the principle of efficient coding leads to an equation for the filter K (f, w) of the
form:

‘K(L w) I((Lw)* = Q(L w) (21)

for some function Q(f,w) that is determined by the statistics of natural scenes and noise
statistics. In the limit where noise is negligible, as is shown in section two, Q(f,w) =
1/R(f,w). More generally, when noise is not negligible Q(f,w) = (R(f,w) — N*)*/R(f, w)?.
In the absence of additional constraints, the solution to equation (21) for K(f,w) is not
unique, since the equation does not determine the phase of the solution.

It is clear that not all solutions of (21) are physical. For example, we can only accept
solutions that are causal; the cell cannot respond before the on-set of the stimulus and thus
we need solutions that satisfy K(x,t) = 0 for ¢ < 0. To construct causal solutions we
use Weiner-Hopf spectrum factorization (Lee 1960). As we prove next, the requirement of
causality of log( K (f,w)) reduces the arbitrariness to phase functions that are independent
of temporal frequency. #

We start by taking the logarithm of equation (21) to arrive at

log(K (£, w)) + log(K*(L,w)) = log(Q(f,w))
= F(f,w) (22)

HThe constraint of causality of log( K (f,w)) is more stringent than causality of K(f,w). However it is
equivalent to a causal filter of minimum phase (Bode 1945). Interestingly, in mammalian auditory systems,
the basilar membrane transfer function is also of minimum phase (Zweig 1976). The advantage of minimum
phase transfer function in sensory systems is obvious: the response has minimum time delay after stimuli
onset.
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the inverse Fourier transform in time of F(f, w) = log(Q(f,w)) is F(f,?) and can be decom-

posed into the sum of causal and anti-causal parts:

in which the causal part F, (f,?) is simply

F(t, 1), ift>0;
ﬁ(f’t):{o.() ;ft<0. (24)

and similarly for the anticausal part F_(f, 7).
Transforming F, (f,¢) and F_(f,t) into Fourier space, they satisfy F(f,w) = F,(f,w) +
F_(f,w). So
log (K (5,10)) + log(K*(5,1)) = Fo(Ew) + (£, w) (25)
Since log(K(f,w)) and Fy(f,w) are both causal, and log(K*(f,w)) and F_(f,w) are anti-

causal we are led to the following solutions:

log([&’(f?w)) = F.|.(£,’LU) + G(D

log(K™(Lw)) = F_(L,w) - O(1), (26)
in which O(f) is any function independent of w. The desired causal solution is determined

by
K(t,w) = 2 ¢Frdw) (27)

Thus by imposing the constraint of causality of log( K (f, w)) we have reduced the arbitrariness
in the solution K to a choice of spatial phase. To fix the choice of spatial phase we impose the
condition that K(x,?) is a real and even function of x, K(x,t) = K(—x,1) (less restrictive
than rotational symmetry but equivalent to it if R(x,?) of natural scenes is rotationally

symmetric). These constraints are equivalent to
K*(f,w) = K(—f,—w) = K(f, —w). (28)
which, through equation (26), leads to
exp(Fi (L, —w) + O(f)) = exp(F_(f,w) — O(F)). (29)
For a physical real system the relationship F, (f,1) = F_(f,—t) is true and thus
Iy (£, —w) = FL(f,w) (30)

which means that the only allowed phases that are consistent with the constraint of even-

symmetry are those which satisfy:
o) — 1 (31)

which has only two solutions ©(f) = 0 or O(f) = iw corresponding to an overall multiplication

by a plus or minus sign.
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FErample
As shown in section two, in the limit of zero spatial frequency, the principle of efficient coding
(taking noise into account) gives the following equation for K (f, w)

w2

Kf,w) K(f,w)" = 32
(o) K(w) = s (32)
in which w, is a cutoff proportional to the noise power.
Following the factorization procedure above, it can be shown that
—w
K = 33
(w) (1 _ Z'w/wc)37 ( )

which means that the response function is given by (14) and the phase, in units of cycles, is

o(w) = % arctan(w/w,) — -, (34)

]

while the temporal kernel is
K(t) = t(1 — mw.t)e 27, (35)

The kernel (35) is plotted in Figure 4-bottom and the phase function is exhibited in
Figure 8-top; the lagged phase response is related to the nonlagged phase through a shift
by w. As is shown in section four, these simple analytic formulae provide good first order

approximations to the cell response properties.

Appendix B: Spatio-Temporal Inseparability

In section three we have made the simplifying assumption that retinal cells do not perform
any significant temporal processing and that they merely decorrelate in space and the LGN
cells merely decorrelate in time. This is not exactly true in the real visual pathway. The
correct thing to do is to allow the retinal cells to filter the natural input and then study the
statistics of the retinal output after rectification. Then use this spatio-temporal statistics to
predict kernels which fully decorrelate in both space and time the retinal signal.

The general problem is as follows. The LGN receives signals from on and off channels
in the retina. Those signals have temporal correlations and perhaps some residual spatial
correlations. We should allow for the possibility that there is some small correlation between
the on and off channels. To decorrelate, the LGN must choose a kernel, K that diagonalizes
the correlation matrix of retinal outputs R:

K-R-K'=1, (36)

3
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Since there are two types of input cells, the on and off, the above equation can be written

(K Kooy (roay (K Koyt (37)
Ky Koo q r Kot Koo ’

in which r =< 0,0, >=< O_0_ > and q =< 0_0; >=< 0,0_ > where Oy is

the retinal output and where we have made the assumption of symmetry of the on and off

more explicitly as:

channels.
In order to solve the above equation, we first perform a transformation to the principal

axes of the covariance matrix by rotating in the on-off space by

%G _11> (38)

i.e., rotation into the base of (Oy —O_) and (O, +O_). In this basis, the correlation matrix

becomes
00 )G DG D=0 ) )

which is block diagonal, and in which Ry =r+q .
Next, we find K_ and K, which satisfy Ky - Ry - KL = 1 as we have done in section
two. The final solution (transforming back into the original coordinate base) is

<K1+ K1_>:1<K++K_, K+—K_> (10)
K,, Koo/ 2\K,-K_, K, +K_)/°

Now there are two cell types

O, = (K;+K_)- O, +(K,—-K_)-O_
0, = (K, +K_)-O_+(K,-K_) -0, (41)

where Oy are the retinal outputs computed using the most accurate rectified spatio-temporal
retinal on and off kernels. The outputs O; and O, when rectified lead to four cell types.
Rectification of Oy (O2) leads to on-center (off-center) lagged and nonlagged cells. We see
that the contribution of the off-center retinal channel to an on-center LGN cell is proportional
to the Ky — K _ which is much smaller than the contribution of the on-center retinal channel
(K4 + K_) and hence the classification into on and off channels should still persist in the
LGN.

Using a more realistic spatio-temporal retinal filter derived from various experiments,
similar to the one used in Wehmeier et al. (1989), we have calculated the correlation matrix of
retinal responses, R, to the same set of time-varying images used to derive R(f, w), and then
numerically evaluated the response properties of cells computed from the above result. We
found only minor modifications to the response properties computed under the simplifying
assumptions of section three. Thus, with the current reliability level of data, there is no

reason to use anything more complicated than the simple results of section three.
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